Motivation

- Racial disparities in healthcare expenditures have been widely documented, yet the underlying factors remain complex and require further exploration.
- > A multitude of interrelated factors complicates analysis: **socioeconomic status** (SES), access to insurance, health behaviors, health status.
- > A flexible, nonparametric framework based on **counterfactual formalization** in path-specific analysis to identify and quantify sources of disparities is needed. Estimator derived from efficient influence function (EIF) and modeling
- technique involving **SuperLearner** are crucial for robust and reliable estimation.

Causal Path-Specific Effect Analysis

Estimand

A nested potential outcome:

$$egin{aligned} \phi(r_0,r_1,r_2,r_3,r_4) \coloneqq Yigg(r_0,M_1(r_1),M_2ig(r_2,M_1(r_1)ig),M_3igg(r_3,M_1(r_1),M_2ig(r_2,M_1(r_1)ig)igg),\ M_4igg(r_4,M_1(r_1),M_2ig(r_2,M_1(r_1)ig),M_3igg(r_3,M_1(r_1),M_2ig(r_2,M_1(r_1)igg)igg)) \end{aligned}$$

The healthcare expenditures of individuals if they belonged to racial group $R = r_0$, with their SES (M_1) , insurance (M_2) , health behaviors (M_3) , and health status (M_4) set to the natural levels they would have attained if they hypothetically belonged to racial groups r_1 , r_2 , r_3 , and r_4 , respectively, where $(r_0, r_1, r_2, r_3, r_4) \in \{0, 1\}^4$.

Natural path-specific effects (PSEs):

$ ho_{R o Y}$:	$= \mathbb{E}[\phi(1,0,0,0,0) - \phi(0,0,0,0,0)] ,$
$\rho_{R \to M_1 \rightsquigarrow Y}$:	$= \mathbb{E}[\phi(0, 1, 0, 0, 0) - \phi(0, 0, 0, 0, 0)],$
$\rho_{R \to M_2 \leadsto Y}$:	$= \mathbb{E}[\phi(0, 0, 1, 0, 0) - \phi(0, 0, 0, 0, 0)],$
$\rho_{R \to M_3 \leadsto Y}$:	$= \mathbb{E}[\phi(0, 0, 0, 1, 0) - \phi(0, 0, 0, 0, 0)],$
$\rho_{R \to M_4 \leadsto Y}$:	$= \mathbb{E}[\phi(0, 0, 0, 0, 1) - \phi(0, 0, 0, 0, 0)] .$

Identification

Assumptions: (a) Consistency; (b) Conditional ignorability; (c) Positivity Identification formula:

$$\rho_{R \to M_k \rightsquigarrow Y} = \int y \Big\{ dP(y \mid \overline{m}_4, R = 0, x) \prod_{k=1}^K dP(m_k \mid \overline{m}_{k-1}, r_k, x) - dP(y \mid R = 0, x) \Big\} dP(x) ,$$

$$\rho_{R \to Y} = \int y \Big\{ dP(y \mid \overline{m}_4, R = 1, x) \prod_{k=1}^K dP(m_k \mid \overline{m}_{k-1}, R = 0, x) - dP(y \mid R = 0, x) \Big\} dP(x) .$$

Multiply robust estimators

$$\begin{split} \psi_{\rho_{R \to M_{k} \to Y}, n} = &\frac{1}{n} \sum_{i=1}^{n} \left[\frac{(1-R_{i})}{\hat{g}_{0}(0|x_{i})} \frac{\hat{g}_{k}(1|\overline{m}_{k,i}, x_{i})}{\hat{g}_{k}(0|\overline{m}_{k,i}, x_{i})} \frac{\hat{g}_{k-1}(0|\overline{m}_{k-1,i}, x_{i})}{\hat{g}_{k-1}(1|\overline{m}_{k-1,i}, x_{i})} \Big(Y_{i} - \hat{\mu}_{k}(\overline{m}_{k,i}, 0, x_{i}) \Big) \right. \\ &+ \frac{R_{i}}{\hat{g}_{0}(0|x_{i})} \frac{\hat{g}_{k-1}(0|\overline{m}_{k-1,i}, x_{i})}{\hat{g}_{k-1}(1|\overline{m}_{k-1,i}, x_{i})} \Big(\hat{\mu}_{k}(\overline{m}_{k,i}, 0, x_{i}) - \hat{\mathcal{B}}_{k}(\overline{m}_{k-1,i}, 1, x_{i}) \Big) \\ &+ \frac{(1-R_{i})}{\hat{g}_{0}(0|x_{i})} \Big(\hat{\mathcal{B}}_{k}(\overline{m}_{k-1,i}, 1, x_{i}) - \hat{\mathcal{C}}(\hat{\mathcal{B}}_{k}, r_{1}, x_{i}) \Big) + \hat{\mathcal{C}}(\hat{\mathcal{B}}_{k}, r_{1}, x_{i}) \Big) \\ &+ \frac{1}{\hat{g}_{0}(0|x_{i})} \frac{\hat{g}_{k}(0|\overline{m}_{k,i}, x_{i})}{\hat{g}_{k}(1|\overline{m}_{k,i}, x_{i})} \Big(Y_{i} - \hat{\mu}_{k}(\overline{m}_{k,i}, 1, x_{i}) \Big) \\ &+ \frac{(1-R_{i})}{\hat{g}_{0}(0|x_{i})} \Big(\hat{\mu}_{k}(\overline{m}_{k,i}, 1, x_{i}) - \hat{\mathcal{C}}(\hat{\mu}_{k,i}, 0, x_{i}) \Big) + \hat{\mathcal{C}}(\hat{\mu}_{k,i}, 0, x_{i}) \Big] \end{split}$$

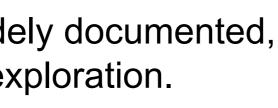
• $\psi_{\rho_{R \to M_k \rightsquigarrow Y}} = E(\phi(r_0, r_1, r_2, r_3, r_4))$, where $r_k = 1, r_j = 0, j \neq k$ • $\mu_k(\overline{m}_k, r_0, x) = \mathbb{E}(Y|\overline{m}_k, r_0, x)$, $\mathcal{B}_k(\overline{m}_{k-1}, r_k, x) = \mathbb{E}(\mu_k(\overline{m}_k, r_0, x)|\overline{m}_{k-1}, r_k, x)$, $\mathcal{C}(\cdot, r_1, x) = \mathbb{E}(\cdot|r_1, x)$ • $g_k(r|\overline{m}_k, x) = P(r|\overline{m}_k, x)$

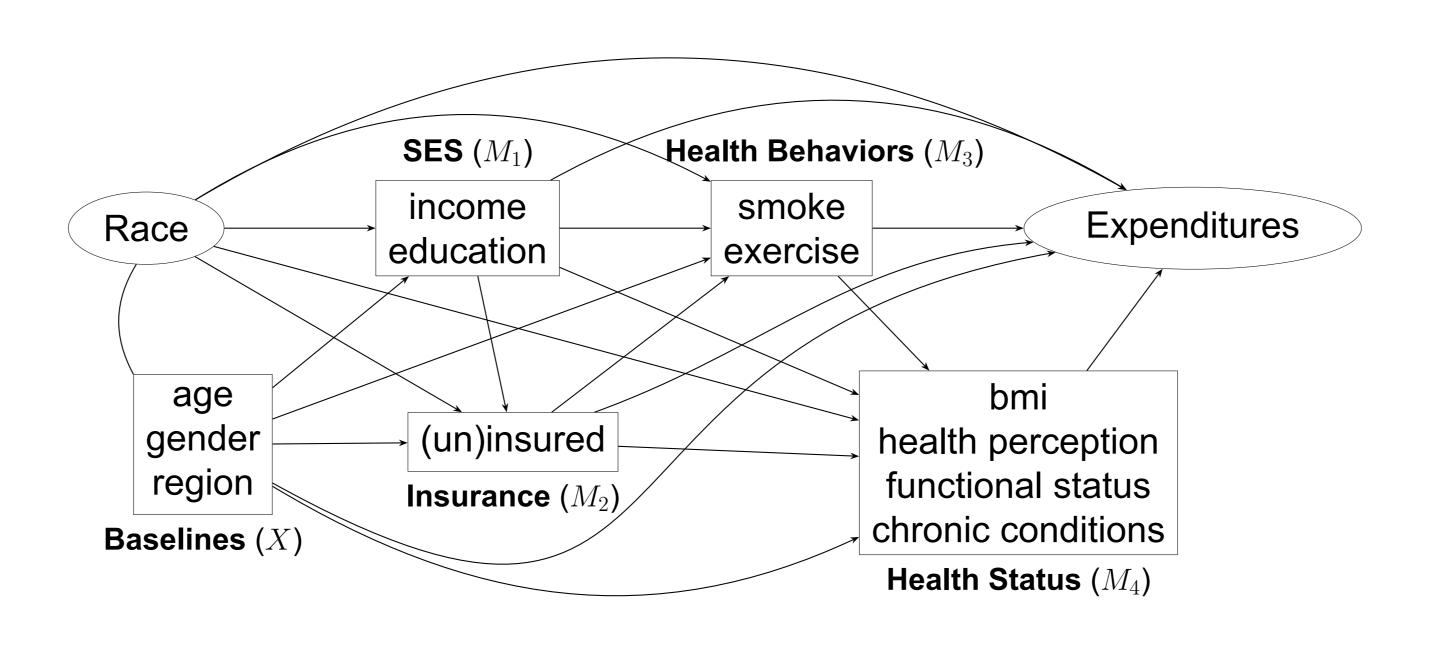
Examining Racial Disparities in Healthcare Expenditures via Causal Mediation Analysis

Xiaxian Ou and Razieh Nabi

Department of Biostatistics and Bioinformatics, Emory University

Graphical Representation





Empirical Analysis of MEPS Data

Medical Expenditures Panel Survey (MEPS) 2009: non-Hispanic Whites (9,830), non-Hispanic Blacks (3,905), Asians (1,431) and Hispanics (5,150)

Data challenge

. Zero-inflated right-skewed data

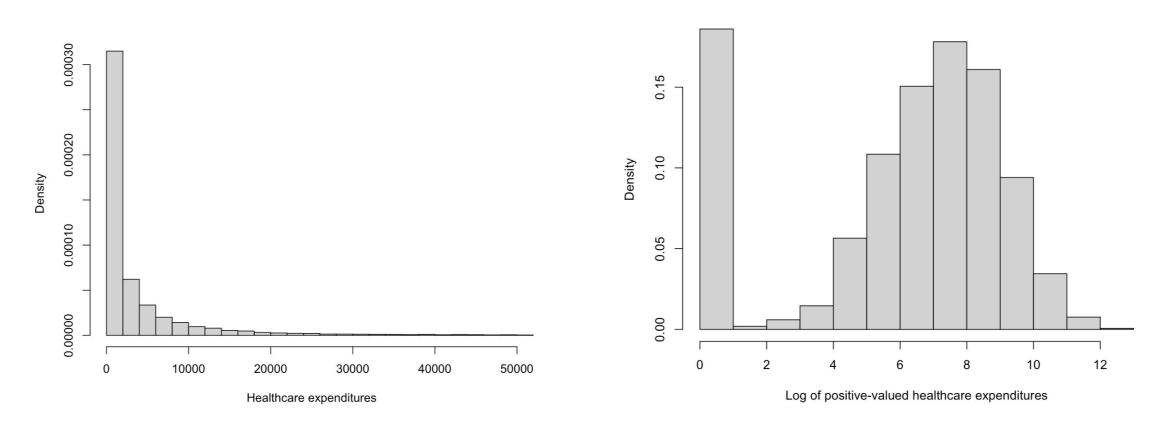


Figure 1. The original healthcare expenditures and the log transformation in positive data.

2. Complex relation between treatment, mediators, and outcome Naive use of ML may lead to large first-order bias of the plug-in estimator.

Approach

! Two-part model

- Part 1: The probability of a non-zero response, ▶ Part 2: The probability distribution of the positive responses $\mathbb{E}[\log(Y) \mid Y > 0, X]$
- The conditional mean: $\mathbb{E}[\log(Y) \mid X] = P(Y > 0 \mid X) \times \mathbb{E}[\log(Y) \mid Y > 0, X].$

Transformation

 \blacktriangleright The estimated geometric mean G_n of ratio scale (e.g. total effect):

$$\psi_n(1) - \psi_n(0) = \frac{1}{n} \sum_{i=1}^n (\log(\hat{Y}_i(1)) - \log(\hat{Y}_i(0))) = \log(\sqrt[n]{\frac{\hat{Y}_1(1)}{\hat{Y}_1(0)} \dots \frac{\hat{Y}_n(1)}{\hat{Y}_n(0)}})$$
$$exp(\psi_n(1) - \psi_n(0)) = \sqrt[n]{\frac{\hat{Y}_1(1)}{\hat{Y}_1(0)} \dots \frac{\hat{Y}_n(1)}{\hat{Y}_n(0)}} = G_n\left(\frac{\hat{Y}(1)}{\hat{Y}(0)}\right)$$

Delta method:

$$\psi_n(1) - \psi_n(0) \sim N(\psi_0(1) - \psi_0(0), \frac{\sigma_{1,0}^2}{n})$$

$$\psi_n(1) - \psi_n(0)) \sim N(exp(\psi_0(1) - \psi_0(0)), exp(\psi_0(1) - \psi_0(0))^2 \frac{\sigma_{1,0}^2}{n})$$

$$\psi_n(1) - \psi_n(0) \sim N(\psi_0(1) - \psi_0(0), \frac{\sigma_{1,0}^2}{n})$$
$$exp(\psi_n(1) - \psi_n(0)) \sim N(exp(\psi_0(1) - \psi_0(0)), exp(\psi_0(1) - \psi_0(0))^2 \frac{\sigma_{1,0}^2}{n})$$

SuperLearner

- Binomial family: glm, glm.interaction, randomForest, xgboost, and dbarts
- Gaussian family: glmnet, polymars, lm, and dbarts

,
$$P(Y > 0 \mid X)$$
,

Dath			Dath		
Path	Effect(95%CI)	p value	Path	Effect(95%CI)	p value
Whites vs Blacks*			Blacks vs Asians*		
$R \to M_1 \rightsquigarrow Y$	1.098(1.035~1.161)	0.001	$R \to M_1 \rightsquigarrow Y$	0.837(0.692~0.981)	0.043
$R \to M_2 \rightsquigarrow Y$	1.009(0.974~1.044)	0.606	$R \to M_2 \rightsquigarrow Y$	1.024(0.947~1.101)	0.531
$R \to M_3 \rightsquigarrow Y$	0.974(0.951~0.998)	0.035	$R \to M_3 \rightsquigarrow Y$	0.970(0.917~1.023)	0.271
$R \to M_4 \to Y$	1.035(0.963~1.107)	0.337	$R \to M_4 \to Y$	1.475(1.243~1.708)	0.000
$R \to Y$	1.787(1.629~1.945)	0.000	$R \to Y$	1.111(0.917~1.305)	0.237
Total effect	2.106(1.865~2.347)	0.000	Total effect	1.297(1.008~1.585)	0.022
Whites vs Asians*			Blacks vs His	panics*	
$R \to M_1 \rightsquigarrow Y$	0.945(0.834~1.055)	0.339	$R \to M_1 \rightsquigarrow Y$	1.268(1.194~1.343)	0.000
$R \to M_2 \rightsquigarrow Y$	1.054(0.992~1.116)	0.081	$R \to M_2 \rightsquigarrow Y$	1.486(1.384~1.588)	0.000
$R \to M_3 \rightsquigarrow Y$	0.982(0.927~1.036)	0.509	$R \to M_3 \rightsquigarrow Y$	1.053(1.006~1.099)	0.022
$R \to M_4 \to Y$	1.358(1.171~1.545)	0.000	$R \to M_4 \to Y$	1.367(1.183~1.552)	0.000
$R \to Y$	2.521(2.159~2.883)	0.000	$R \to Y$	0.988(0.910~1.066)	0.770
Total effect	2.805(2.304~3.306)	0.000	Total effect	2.111(1.791~2.431)	0.000
Whites vs Hispanics*			Asians vs Hispanics*		
$R \to M_1 \rightsquigarrow Y$	1.572(1.438~1.705)	0.000	$R \to M_1 \rightsquigarrow Y$	1.960(1.706~2.213)	0.000
$R \to M_2 \rightsquigarrow Y$	1.377(1.305~1.450)	0.000	$R \to M_2 \rightsquigarrow Y$	1.342(1.221~1.463)	0.000
$R \to M_3 \rightsquigarrow Y$	1.089(1.020~1.159)	0.009	$R \to M_3 \rightsquigarrow Y$	0.998(0.978~1.018)	0.846
$R \to M_4 \to Y$	1.436(1.307~1.564)	0.000	$R \to M_4 \to Y$	0.811(0.716~0.906)	0.000
	2.044(1.865~2.223)	0.000	$R \to Y$	0.988(0.912~1.064)	0.760
Total effect	4.647(4.143~5.150)	0.000	Total effect	1.884(1.541~2.227)	0.000

 \star Total effects were significant in all race comparisons

 \star The effects via SES and health status were significant in five comparisons.

 \star The direct effects were significant in the comparisons between Whites and any minority.

R Package: *flexPaths*

- G-computation, and EIF estimator.

$$A \xrightarrow{X} M_1 \xrightarrow{X} M_2 \xrightarrow{Y} Y$$

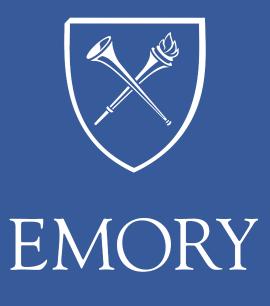
(a) Single treatment

A nested potential outcome

 $\phi(r_{11},r_{12},r_{10})$

e.g. direct effect:

 $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$



Results

Flexible model size: Flexible number of treatments and mediators. 2. Flexible decomposition: The Natural PSEs and the Cumulative PSEs. 3. Flexible pathways: The PSE through flexible identified pathway(s). . Flexible models: glm/lm, dbarts, SuperLearner and user-extended model. 5. Flexible estimators: Inverse Probability Weighting (IPW), plug-in

(b) Multiple treatments

 $\phi egin{pmatrix} r_{11}, \ r_{12}, \ r_{13}, \ r_{10}, \ r_{22}, \ r_{23}, \ r_{20} \end{pmatrix}$

 $r_{ij} \in \{0,1\}$: the counterfactual value of i_{th} treatment for j_{th} mediator.

 $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$ $| na \ 0 \ 0 \ 1 |$

References

[1] J. Pearl, "Direct and Indirect Effects," in The Seventeenth Conference, (San Francisco, CA: Morgan Kaufmann),

[2] X. Zhou, "Semiparametric Estimation for Causal Mediation Analysis with Multiple Causally Ordered Mediators," Journal of the Royal Statistical Society Series B: Statistical Methodology, vol. 84, pp. 794–821, July 2022.

pp. 411–420, 2001.