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• Evidence from the Medical Expenditures Panel Survey 2021 data has highlighted the
existence of racial disparities in the United States 1.

• Differences in healthcare expenditures reflect inequitable utilization of healthcare services

1
Source: KFF analysis of 2021 Medical Expenditure Panel Survey
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Backgrounds

Limitations of previous studies:

• Rely on regression coefficients in models with controlling confounders.

• Mediation analysis techniques, such as the Baron-Kenny approach, are often limited by
assumptions of linearity (Baron and Kenny, 1986).

• Large first-order bias of the plug-in estimator.

Motivations:

• A multitude of interrelated factors complicates analysis.

• A flexible, nonparametric framework based on counterfactual formalization in
path-specific analysis (Pearl, 2009).

• Estimator derived from efficient influence function (EIF) and modeling technique
involving SuperLearner.
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Causal Path-Specific Effect Analysis

1 Estimand

2 Identification

3 Multiply Robust Estimators
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Estimand
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where r0 ∈ {0, 1} and r = (r1, r2, r3, r4) ∈ {0 ∪ {1k : k = 1, 2, 3, 4}}, where 1k denotes an indicator vector of

size 4 with the k-th element being 1 (activating the pathways through Mk), and all other elements set to 0
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Estimand
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A nested potential outcome (example):

ϕ(1,0) := Y
(
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The healthcare expenditures would be if individuals were White, while all mediating factors (SES, insurance,

health behaviors, health status) remain at levels observed for Black individuals.
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Estimand
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A nested potential outcome (example):

ϕ(0,12) := Y
(
0,M1(0)︸ ︷︷ ︸
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,

The healthcare expenditures of a hypothetical population would be where everyone is Black and insurance is set

to the levels observed for White individuals.
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Estimand

Average potential outcome

γR→Y := E[ϕ(1,0)] , γR→Mk⇝Y := E[ϕ(0,1k)] , γinact = E[ϕ(0,0)] .

Direct effect and effect through each mediator:

ρR→Y := γR→Y − γinact , ρR→Mk⇝Y := γR→Mk⇝Y − γinact .

• ρR→Y : The average change in healthcare expenditures if individuals were White vs. Black, while
all mediating factors (SES, insurance, health behaviors, health status) remain at levels observed
for Black individuals (discrimination).

• ρR→Mk⇝Y : It compares the expenditures of a hypothetical population where everyone is Black to
one where Mk is set to the levels observed for White individuals.
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Identification

Assumptions: (a) Consistency; (b) Conditional ignorability; (c) Positivity

Y (r0,m4),M4(r4,m3),M3(r3,m2),M2(r2,m1),M1(r1) ⊥ R | X ,

Y (r0,m4),M4(r4,m3),M3(r3,m2),M2(r2,m1) ⊥ M1(r) | R,X ,

Y (r0,m4),M4(r4,m3),M3(r3,m2) ⊥ M2(r,m1) | M1, R,X ,

Y (r0,m4),M4(r4,m3) ⊥ M3(r,m2) | M2, R,X ,

Y (r0,m4) ⊥ M4(r,m3) | M3, R,X .
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Identification

Assumptions: (a) Consistency; (b) Conditional ignorability; (c) Positivity

Identification formula:

γinact =

∫
ydP (y | R = 0, x)dP (x) ,

γR→Y =

∫
ydP (y | m4, R = 1, x)

4∏
k=1

dP (mk | mk−1, R = 0, x)dP (x) ,

γR→Mk⇝Y =

∫
ydP (y | m4, R = 0, x)dP (mk | mk−1, R = 1, x)

4∏
j=1
j ̸=k

dP (mj | mj−1, R = 0, x)dP (x) ,

★ Large first-order bias PΦ(Q̂) of the plug-in estimator: γplug-in(Q̂) = γ(Q)−PΦ(Q̂)+R2(Q̂,Q)
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Multiply robust estimators

γ+
R→Y (Q̂) =

1

n

n∑
i=1

{
Ri
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1− ĝ4(M4,i, Xi)

ĝ4(M4,i, Xi)

{
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}
+

1−Ri
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µ̂4(M4,i, R = 1, Xi)− Ĉµ4 (R = 0, Xi)

}
+ Ĉµ4 (R = 0, Xi)

}
,

γ+
R→Mk⇝Y (Q̂) =

1

n

n∑
i=1

{
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1− π̂(Xi)

ĝk(Mk,i, Xi)

1− ĝk(Mk,i, Xi)

1− ĝk−1(Mk−1,i, Xi)

ĝk−1(Mk−1,i, Xi)

{
Yi − µ̂k(Mk,i, R = 0, Xi)

}
+

Ri

1− π̂(Xi)

1− ĝk−1(Mk−1,i, Xi)

ĝk−1(Mk−1,i, Xi)

{
µ̂k(Mk,i, R = 0, Xi)− B̂k(Mk−1,i, R = 1, Xi)

}
+

1−Ri

1− π̂(Xi)

{
B̂k(Mk−1,i, R = 1, Xi)− ĈBk

(r1, Xi)
}
+ ĈBk

(r1, Xi)

}
, k = 1, 2, 3, 4 .

• π(x) = P (R = 1|x);
• gk(mk, x) = P (R = 1|mk, x)

• µk(mk, r0, x) = E(Y |mk, r0, x), Bk(mk−1, rk, x) = E(µk(mk, r0, x)|mk−1, rk, x),

• CBk
(r1, x) = E[Bk(mk−1, rk, x)|r1, x] for k = 2, 3, 4, and Cµ4

(r1, x) = E[µ4(m4, ry, x)|r1, x];
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Multiply robust estimators
Advantages

1 These estimators are robust against model misspecification.

2 These estimators are particularly well-suited for incorporating data-adaptive methods

3 Desirable statistical properties such as asymptotic normality and
√
n-consistency
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Empirical Data Analysis

1 Zero inflation and right skewed data

2 SuperLearner
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MEPS Data

• The Medical Expenditures Panel Survey (MEPS), is a large-scale survey that collects
detailed data on healthcare costs, use, and insurance coverage from families, individuals,
medical providers, and employers across the United States.

• Here, we used the household components of the 2009 MEPS data. The initial sample
size was 20,889, which was trimmed to 20,316 after focusing on non-Hispanic Whites
(9,830), non-Hispanic Blacks (3,905), Asians (1,431) and Hispanics (5,150).
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Variables

1 Self-reported race;

2 Mediators:
• SES (M1): income, education
• Insurance access (M2): uninsured
• Health behaviors (M3): smoking, exercise
• Health status (M4): BMI, health perception, functional status (daily living activities,

functional, or sensory abilities, social limitations) and chronic conditions (diabetes, asthma,
high blood pressure, coronary heart disease, angina, myocardial infarction, stroke,
emphysema, cholesterol, arthritis, and cancer).

3 Covariates: age, gender, region

4 Outcome: Annual total healthcare expenditures — the sum of out-of-pocket payments
and payments by private insurance, Medicaid, Medicare, and other sources.
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Challenge
Zero-inflated right-skewed data

Two-part model

• Part 1: The probability of a non-zero response, P (Y > 0 | X),

• Part 2: The probability distribution of the positive responses E[log(Y ) | Y > 0, X]

The conditional mean: E[I(Y > 0) log(Y ) | X] = P (Y > 0 | X)× E[log(Y ) | Y > 0, X].
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Model estimation
SuperLearner

SuperLearner: an ensemble learning method that combines flexible statistical and machine
learning models via cross-validation to reduce model misspecification and improve predictive
accuracy (Van der Laan et al., 2007).

• Binomial family: glm, glm.interaction, randomForest, xgboost, dbarts

• Gaussian family: glmnet, polymars, lm, dbarts
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Results and Discussion
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Results

Interpretation :

• The scaled geometric mean of healthcare expenditures would be 1.787 times if individuals were
White vs. Black, while all mediating factors remain at levels observed for Black individuals.

• If SES for Blacks were hypothetically aligned with that of Whites, the scaled geometric mean of
their healthcare expenditures would increase to 1.098 (95% CI: 1.035 – 1.161) times.

Whites vs Blacks*

Path Effect(95%CI) p value

R → M1 ⇝ Y 1.098(1.035˜1.161) 0.001
R → M2 ⇝ Y 1.009(0.974˜1.044) 0.606
R → M3 ⇝ Y 0.974(0.951˜0.998) 0.035
R → M4 → Y 1.035(0.963˜1.107) 0.337
R → Y 1.787(1.629˜1.945) 0.000
Total effect 2.106(1.865˜2.347) 0.000
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Results

★ (1) Total effect: inequality of healthcare access and utilization.

Path Effect(95%CI) p value

Whites vs Blacks*

R → M1 ⇝ Y 1.098(1.035˜1.161) 0.001
R → M2 ⇝ Y 1.009(0.974˜1.044) 0.606
R → M3 ⇝ Y 0.974(0.951˜0.998) 0.035
R → M4 → Y 1.035(0.963˜1.107) 0.337
R → Y 1.787(1.629˜1.945) 0.000
Total effect 2.106(1.865˜2.347) 0.000

Whites vs Asians*

R → M1 ⇝ Y 0.945(0.834˜1.055) 0.339
R → M2 ⇝ Y 1.054(0.992˜1.116) 0.081
R → M3 ⇝ Y 0.982(0.927˜1.036) 0.509
R → M4 → Y 1.358(1.171˜1.545) 0.000
R → Y 2.521(2.159˜2.883) 0.000
Total effect 2.805(2.304˜3.306) 0.000

Whites vs Hispanics*

R → M1 ⇝ Y 1.572(1.438˜1.705) 0.000
R → M2 ⇝ Y 1.377(1.305˜1.450) 0.000
R → M3 ⇝ Y 1.089(1.020˜1.159) 0.009
R → M4 → Y 1.436(1.307˜1.564) 0.000
R → Y 2.044(1.865˜2.223) 0.000
Total effect 4.647(4.143˜5.150) 0.000

Path Effect(95%CI) p value

Blacks vs Asians*

R → M1 ⇝ Y 0.837(0.692˜0.981) 0.043
R → M2 ⇝ Y 1.024(0.947˜1.101) 0.531
R → M3 ⇝ Y 0.970(0.917˜1.023) 0.271
R → M4 → Y 1.475(1.243˜1.708) 0.000
R → Y 1.111(0.917˜1.305) 0.237
Total effect 1.297(1.008˜1.585) 0.022

Blacks vs Hispanics*

R → M1 ⇝ Y 1.268(1.194˜1.343) 0.000
R → M2 ⇝ Y 1.486(1.384˜1.588) 0.000
R → M3 ⇝ Y 1.053(1.006˜1.099) 0.022
R → M4 → Y 1.367(1.183˜1.552) 0.000
R → Y 0.988(0.910˜1.066) 0.770
Total effect 2.111(1.791˜2.431) 0.000

Asians vs Hispanics*

R → M1 ⇝ Y 1.960(1.706˜2.213) 0.000
R → M2 ⇝ Y 1.342(1.221˜1.463) 0.000
R → M3 ⇝ Y 0.998(0.978˜1.018) 0.846
R → M4 → Y 0.811(0.716˜0.906) 0.000
R → Y 0.988(0.912˜1.064) 0.760
Total effect 1.884(1.541˜2.227) 0.000
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Results

★ (2) SES and insurance were important mediators.

Path Effect(95%CI) p value

Whites vs Blacks*

R → M1 ⇝ Y 1.098(1.035˜1.161) 0.001
R → M2 ⇝ Y 1.009(0.974˜1.044) 0.606
R → M3 ⇝ Y 0.974(0.951˜0.998) 0.035
R → M4 → Y 1.035(0.963˜1.107) 0.337
R → Y 1.787(1.629˜1.945) 0.000
Total effect 2.106(1.865˜2.347) 0.000

Whites vs Asians*

R → M1 ⇝ Y 0.945(0.834˜1.055) 0.339
R → M2 ⇝ Y 1.054(0.992˜1.116) 0.081
R → M3 ⇝ Y 0.982(0.927˜1.036) 0.509
R → M4 → Y 1.358(1.171˜1.545) 0.000
R → Y 2.521(2.159˜2.883) 0.000
Total effect 2.805(2.304˜3.306) 0.000

Whites vs Hispanics*

R → M1 ⇝ Y 1.572(1.438˜1.705) 0.000
R → M2 ⇝ Y 1.377(1.305˜1.450) 0.000
R → M3 ⇝ Y 1.089(1.020˜1.159) 0.009
R → M4 → Y 1.436(1.307˜1.564) 0.000
R → Y 2.044(1.865˜2.223) 0.000
Total effect 4.647(4.143˜5.150) 0.000

Path Effect(95%CI) p value

Blacks vs Asians*

R → M1 ⇝ Y 0.837(0.692˜0.981) 0.043
R → M2 ⇝ Y 1.024(0.947˜1.101) 0.531
R → M3 ⇝ Y 0.970(0.917˜1.023) 0.271
R → M4 → Y 1.475(1.243˜1.708) 0.000
R → Y 1.111(0.917˜1.305) 0.237
Total effect 1.297(1.008˜1.585) 0.022

Blacks vs Hispanics*

R → M1 ⇝ Y 1.268(1.194˜1.343) 0.000
R → M2 ⇝ Y 1.486(1.384˜1.588) 0.000
R → M3 ⇝ Y 1.053(1.006˜1.099) 0.022
R → M4 → Y 1.367(1.183˜1.552) 0.000
R → Y 0.988(0.910˜1.066) 0.770
Total effect 2.111(1.791˜2.431) 0.000

Asians vs Hispanics*

R → M1 ⇝ Y 1.960(1.706˜2.213) 0.000
R → M2 ⇝ Y 1.342(1.221˜1.463) 0.000
R → M3 ⇝ Y 0.998(0.978˜1.018) 0.846
R → M4 → Y 0.811(0.716˜0.906) 0.000
R → Y 0.988(0.912˜1.064) 0.760
Total effect 1.884(1.541˜2.227) 0.000
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Results

★ (3) Direct effect: The direct effects were significant in the comparisons between Whites and any minority
(unmeasered variables or discrimination).

Path Effect(95%CI) p value

Whites vs Blacks*

R → M1 ⇝ Y 1.098(1.035˜1.161) 0.001
R → M2 ⇝ Y 1.009(0.974˜1.044) 0.606
R → M3 ⇝ Y 0.974(0.951˜0.998) 0.035
R → M4 → Y 1.035(0.963˜1.107) 0.337
R → Y 1.787(1.629˜1.945) 0.000
Total effect 2.106(1.865˜2.347) 0.000

Whites vs Asians*

R → M1 ⇝ Y 0.945(0.834˜1.055) 0.339
R → M2 ⇝ Y 1.054(0.992˜1.116) 0.081
R → M3 ⇝ Y 0.982(0.927˜1.036) 0.509
R → M4 → Y 1.358(1.171˜1.545) 0.000
R → Y 2.521(2.159˜2.883) 0.000
Total effect 2.805(2.304˜3.306) 0.000

Whites vs Hispanics*

R → M1 ⇝ Y 1.572(1.438˜1.705) 0.000
R → M2 ⇝ Y 1.377(1.305˜1.450) 0.000
R → M3 ⇝ Y 1.089(1.020˜1.159) 0.009
R → M4 → Y 1.436(1.307˜1.564) 0.000
R → Y 2.044(1.865˜2.223) 0.000
Total effect 4.647(4.143˜5.150) 0.000

Path Effect(95%CI) p value

Blacks vs Asians*

R → M1 ⇝ Y 0.837(0.692˜0.981) 0.043
R → M2 ⇝ Y 1.024(0.947˜1.101) 0.531
R → M3 ⇝ Y 0.970(0.917˜1.023) 0.271
R → M4 → Y 1.475(1.243˜1.708) 0.000
R → Y 1.111(0.917˜1.305) 0.237
Total effect 1.297(1.008˜1.585) 0.022

Blacks vs Hispanics*

R → M1 ⇝ Y 1.268(1.194˜1.343) 0.000
R → M2 ⇝ Y 1.486(1.384˜1.588) 0.000
R → M3 ⇝ Y 1.053(1.006˜1.099) 0.022
R → M4 → Y 1.367(1.183˜1.552) 0.000
R → Y 0.988(0.910˜1.066) 0.770
Total effect 2.111(1.791˜2.431) 0.000

Asians vs Hispanics*

R → M1 ⇝ Y 1.960(1.706˜2.213) 0.000
R → M2 ⇝ Y 1.342(1.221˜1.463) 0.000
R → M3 ⇝ Y 0.998(0.978˜1.018) 0.846
R → M4 → Y 0.811(0.716˜0.906) 0.000
R → Y 0.988(0.912˜1.064) 0.760
Total effect 1.884(1.541˜2.227) 0.000
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Discussion

1 Targeted interventions: To improve educational opportunities for minority populations,
address systemic barriers to insurance enrollment, and equip healthcare providers with
training to recognize and address implicit biases.

2 Algorithmic fairness for healthcare decisions: Integrating fairness-aware models could
help ensure that algorithms do not perpetuate structural inequalities, instead promoting
equitable healthcare access for all racial groups (Nabi and Shpitser, 2018).

3 Race as a causal variable: “no causation without manipulation.” we adopted the “weak
interpretation” (VanderWeele and Robinson, 2014) .
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Concluding Remark

Summary: We achieved the application of causal path-specific effect analysis framework to
examine racial disparities in healthcare expenditures, highlighting its potential for broader use
in public health and social science research.

Future work:

• Consider methods to address selection bias and incorporate broader data sources.

• Explore additional pathways, such as those involving exposure-induced confounding.

• Conduct sensitivity analyses.
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flexPaths: An R Package for Flexible and Robust Causal
Path-Specific Effect Estimation
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Workflow of single treatment
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Workflow of single treatment
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Appendix - The ratio of geometric mean

Transformation

• Let Y (r0, r) = I(ϕ(r0, r) > 0) log ϕ(r0, r). The effects are defined as:

exp (E[Y (r0, r)− Y (0,0)]) ≈

{∏n
i=1 ϕi,pos(r0, r)

}P̂ (ϕ(r0,r)>0)/n

{∏n
i=1 ϕi,pos(0,0)

}P̂ (ϕ(0,0)>0)/n
=

Gn

(
ϕpos(r0, r)

)P̂ (ϕ(r0,r)>0)

Gn

(
ϕpos(0,0)

)P̂ (ϕ(0,0)>0)

• Delta method (eg. direct effect):

√
n
(
exp(ρ+R→Y (Q̂))− exp(ρR→Y (Q))

)
→d N

(
0, exp(ρR→Y (Q))2 × E[

(
ΦR→Y (Q)− Φinact(Q)

)2
]
)

.
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